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Using the dynamical cluster approximation, we calculate the correlation functions associated with the
nearest-neighbor bond operator which measure the z component of the spin exchange in the two-dimensional
Hubbard model with U equal to the bandwidth. We find that in the pseudogap region, the local bond suscep-
tibility diverges at T=0. This shows the existence of degenerate bond spin excitation and implies quantum
criticality and bond order formation when long-range correlations are considered. The strong correlation
between excitations on parallel neighboring bonds suggests bond singlet dimerization. The suppression of
divergence for n� �0.78 implies that for these model parameters, this is a quantum critical point which
separates the unconventional pseudogap region characterized by bond order from a conventional Fermi liquid.
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I. INTRODUCTION

The low doping pseudogap �PG� region of the cuprates
has remained an issue of great discussion and controversy,
with experimental data showing anomalous behaviors such
as the suppression of spin excitations in the susceptibility, a
PG in the single-particle spectra, and patterns in the scanning
tunnel microscope �STM� spectra, among others.1,2 While
some investigators attributed the origin of the PG to antifer-
romagnetic �AF� correlations3 or superconducting and/or
density wave fluctuations,4 others argued that the PG is due
to the establishment of order.5–9 In the latter scenario the
optimal doping is in the proximity of the quantum critical
point �QCP� associated with this order.8 Previously10 we in-
vestigated the staggered flux order in the PG region of
single-band Hubbard model, as proposed by Chakravarty et
al.5 Despite the clear evidence of the PG signature in both
one-particle density of states �DOS� and two-particle mag-
netic spectrum, similar to experimental data in cuprates, we
found no evidence of staggered flux order.

Here we investigate a different kind of order associated
with spin bond correlations. Spin bond order states were pro-
posed to take place in the PG region.9,11–13 These bond orders
require the investigation of four-particle susceptibilities,
which is presently very difficult to calculate with our
method. However, while our method does not allow an ex-
haustive investigation of bond order states, we find compel-
ling evidence that in the PG region the bond magnetic de-
grees of freedom should order.

Investigating the local bond excitation susceptibility with
the dynamical cluster approximation �DCA�,14,15 we find evi-
dence of quantum criticality in the two-dimensional �2D�
Hubbard model. We consider the Coulomb interaction U to
be equal to the bandwidth W=8t. The DCA is a cluster
mean-field theory which maps the original lattice model onto
a periodic cluster of size Nc=Lc

2 embedded in a self-
consistent host. Spatial correlations up to a range Lc are
treated explicitly, while those at longer length scales are de-
scribed at the mean-field level. However the correlations in
time, essential for local criticality, are treated explicitly for
all cluster sizes. We measure the fluctuations associated with
the nearest-neighbor bond operator which measure the z

component of spin exchange on the bond. We find degener-
ate bond spin excitations in the doping range 0%– �22%
corresponding to the PG region, which results in a divergent
local bond susceptibility at T=0. This divergence is caused
by ordering in imaginary time rather than the more familiar
ordering in space, and it is associated with the establishment
of long-range order at a general phase transition. Neverthe-
less, in the limit Nc→� one should expect that long-range
bond correlations will quench the entropy and a transition to
a state with long-range order will take place,16 unless a stron-
ger instability such as d-wave pairing occurs first. The DCA
method, which does not allow spatial ordering on distances
larger than the cluster size, will fail to capture this transition
when small clusters are considered. However at temperatures
larger than the ordering temperature the physics would be
determined predominantly by the local quantum fluctuations
described with DCA. The divergent behavior of bond suscep-
tibility is suppressed for doping �22% implying that for
these model parameters, 22% doping is a QCP which sepa-
rates the unconventional pseudogap region characterized by
bond order from a conventional Fermi liquid. We also find a
strong correlation between excitations on parallel neighbor-
ing bonds, which suggests that the pseudogap region is char-
acterized by bond singlet dimerization.

II. FORMALISM

To solve the cluster problem we use the Hirsch-Fye quan-
tum Monte Carlo �QMC� method17 which is based on a dis-
crete path-integral approximation with time step ��. Hirsch-
Hubbard-Stratonovich �HHS� fields are introduced to
decouple the interaction18

exp�− ��Un↑n↓ + ��U�n↑ + n↓�/2� =
1

2
Tr�e2���n↑−n↓�, �1�

where an Ising HHS decoupling field �= 	1 is introduced at
each spin-time location on the cluster. This transforms the
problem of interacting electrons to one of noninteracting par-
ticles coupled to time-dependent fields. The fermionic fields
are then integrated out, and the integrals over the HHS de-
coupling fields are performed with a Monte Carlo algorithm.
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All measurable quantities are completely determined by
the HHS fields and the host Green’s function. The HHS
fields contain all information about correlations �spin, pair,
and charge� in space and time. Moreover, Hirsch18,19 showed
that spin correlations may be directly rewritten in terms of
the HHS decoupling fields. One may interpret the Ising fields
as representing the fermion spin variables

�n�i,��↑ − n�i,��↓� → �1 − e−��U�−1/2��i,�� . �2�

Note that this is an exact mapping, so that all correlation
functions of the HHS fields are, up to a proportionality con-
stant, equivalent to the corresponding correlation functions
of Sz�i ,��= 1

2 �n�i ,��↑−n�i ,��↓�.
In the DCA the one-particle and the two-particle lattice

response functions are calculated with the Dyson equation
using the irreducible cluster self-energy and vertices, respec-
tively. The divergent lattice two-particle susceptibilities indi-
cate phase boundaries. Even when a small 2
2 cluster is
considered, DCA yields regions of AF, d-wave superconduc-
tivity, and PG, similar to the generic phase diagram of cu-
prates �see Fig. 5 in Ref. 20�. However ordering associated
with more complex operators, such as valence bond
singlets,9 is far more difficult to detect with the DCA since it
involves complex equations and up to eight-leg irreducible
interaction vertices. More feasible calculations involve the
corresponding cluster susceptibilities since they can be ob-
tained directly in the QMC process. However, these cluster
susceptibilities are finite-size quantities and can diverge only
at zero temperature �i.e., infinite imaginary time when order-
ing in time occurs�.

To study bond correlations, we define the bond “ij” op-
erator at time � as

B�i, j ;�� = ��i,����j,�� � Sz�i,��Sz�j,�� , �3�

where “i” and “j” label the position in the cluster. For sim-
plicity, we also denote with Bnn �Bnnn� the bond operator
when i and j are �next� nearest-neighbor sites.

In Sec. III we present results for the following correlation
functions:

�0�T� =� d��
B�i;i + x̂,��
B�i;i + x̂,0�� , �4�

���T� =� d��
B�i;i + x̂,��
B�i;i + ŷ,0�� , �5�

�	�T� =� d��
B�i;i + x̂,��
B�i + ŷ ;i + x̂ + ŷ,0�� , �6�

where


B�i;i + x̂,�� = B�i;i + x̂,�� − �Bnn� . �7�

These correlation functions describe the response of the sys-
tem to an external field which couples with the bond operator
Bnn. The field acts to modify the z component of the nearest-
neighbor exchange interaction. Depending on its sign it de-
creases or increases the energy of an AF bond and has an
opposite effect on a ferromagnetic �FM� bond. �0 describes

the local bond response while �� and �	 describe the corre-
lation between nearest-neighbor bonds.

The bond correlation functions are sensitive to both
single-spin fluctuations and two-spin entangled excitations.
To investigate the nature of the bond excitations we intro-
duce the fourth-order spin cumulant functions

F�ij��kl���� = ���i,����j,����k,0���l,0�� − ���i,����j,���


���k,0���l,0�� − ���i,����k,0�����j,����l,0��

− ���i,����l,0�����j,����k,0�� , �8�

F0�T� =� d�F�i,i+x��i,i+x���� . �9�

Note that F�ij��kl� is the correlation function between the
bonds �ij� and �kl� with the single-spin fluctuation terms �the
last two terms in Eq. �8�� subtracted off.

III. RESULTS

We first present calculations on a 2
2 cluster, the small-
est cluster capable of reproducing the generic features of the
cuprate phase diagram. In the doping region relevant for
high-Tc cuprates, the Hubbard model shows evidence of
short-range AF correlations. The expectation value of �next�
nearest-neighbor bond operator Bnn �Bnnn� is negative �posi-
tive� and increases with lowering temperature, as one expects
for a system with short-range AF order. The short-range AF
order is stronger at smaller doping. Bnn and Bnnn versus tem-
perature at different fillings are shown for a Nc=4 cluster in
Figs. 1�a� and 1�b�, respectively.

In the electron-density range 1�n� 
0.78, the tempera-
ture dependence of the local bond susceptibility shows the
existence of degenerate or almost degenerate states with dif-
ferent magnitude of their bond value Bnn. It is interesting that
this doping range corresponds to the pseudogap region of an
Nc=4 cluster �see Fig. 5 in Ref. 20�. As shown in Fig. 1�c�
the extrapolation of our data indicates that �0 is diverging
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FIG. 1. �Color online� �a� and �b� Nearest �next-nearest� neigh-
bor bond expectation value Bnn �Bnnn� versus T for different fillings
n. Short-range AF order is present in the system. �c� Local bond
susceptibility �0 versus T. �0 shows a divergent behavior when
T→0 in the pseudogap region indicating critical behavior.
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when T→0. Since the lowest temperature we can reach is
�0.01t the apparent divergent �0 implies, if not degenerate
states, at least bond excitations with an energy much smaller
than this scale.

In the pseudogap region �i.e., 1�n� 
0.78� �0 diverges
as 
 1

T . This can be seen in Fig. 2�a� where we show �black
line� T�0 versus T at filling n=0.88. T�0 displays a linear
behavior, and at T=0, it extrapolates to a finite value, albeit
small, �0

2. The 
 1
T dependence of susceptibility is consistent

with scenarios which assume two degenerate configurations,
1 and 2, with different bond values such that 2�0=Bnn�1�
−Bnn�2�. It is instructive to draw an analogy with local spin
susceptibility of a system with independent local moments. A
free moment is a doubly degenerate problem where the spin
can be aligned parallel or antiparallel to a particular direc-
tion. A perturbing magnetic field lifts the degeneracy of the
two configurations by an amount proportional to the moment
and the magnetic field. Similarly, in our system the perturb-
ing Hamiltonian acting on the bond �ij�, Hext=hB�i , j�, splits
the two configurations with an amount proportional to the
field h and B�i , j��1�−B�i , j��2�. Thus, the 
 1

T dependence of
the local bond susceptibility suggests the existence of two
degenerate states with different bond magnitude. Of course
other scenarios compatible with a 
 1

T -like susceptibility can-
not be excluded.

It is interesting that the divergence of the bond suscepti-
bility is not due to single-spin flips since the fourth-order
spin cumulant shows a similar divergence. This can be seen
in Fig. 2�b� where both the local bond �0�T� and the local

cumulant F0�T� are shown. They both diverge like
�0

2

T since
T�0�T� and TF0�T� intersect exactly at T=0 �see Fig. 2�c��,
which we find to be true at all dopings in the pseudogap
region. Therefore the low-temperature regime is character-
ized by entangled two-spin excitations rather than by simple
single-spin ones.

The bond correlations are strongest around n�0.88 and
weak at small and large dopings. This can be seen both by
inspecting �0�T� in Fig. 1�b� and by looking at the bond

moment �0
2 versus filling in Fig. 2�d�. At half filling, the

bond moment extrapolates to zero since the numerical data
do not show evidence of divergent susceptibilities in the un-
doped system. At finite doping �0

2 increases with increasing
doping displaying a maximum at n�0.88. �0

2�n� decreases
with further doping until it vanishes at n�0.78.

At low temperatures we find a strong positive correlation
between nearest-neighbor parallel bonds and a small nega-
tive correlation between nearest-neighbor perpendicular
bonds. This is shown in Fig. 3�a�. �	 is increasing strongly
with lowering T; the numerical data indicate even a possible
divergence when T→0, although it is weaker than 
 1

T char-
acteristic to local bond fluctuations �see Fig. 2�a��. The large
value of �	 shows that increasing or reducing the antiferro-
magnetism on a bond implies a similar effect on the nearest-
neighbor parallel bond, whereas the correlation between
nearest-neighbor perpendicular bond fluctuations �� is much
smaller and negative.

Larger cluster calculations are limited to finite tempera-
tures due to the minus-sign problem present in the Hirsch-
Fye algorithm. For example, for the values of U /W used
here, when Nc=16 the minus-sign limits Hirsch-Fye QMC
calculations to T�0.112t for fillings in the pseudogap re-
gion. Unfortunately, this temperature is outside the tempera-
ture range where the bond critical behavior was noticed for
Nc=4. Moreover one should expect the divergent behavior of
the bond correlations to reduce with increasing the cluster
size. This is due to the establishment of bond order when
spatial correlations at larger length scale are incorporated,
which is a similar behavior noticed previously in the local
spin susceptibility.21

For the Nc=16 cluster the correlation between nearest-
neighbor parallel bonds is larger than the correlation between
nearest-neighbor perpendicular bonds, consistent with the
Nc=4 results. This can be seen in Fig. 3�b�, where �	 and ��

are shown for Nc=16 at two different fillings. At smaller
doping, n=0.88, in the temperature range available, the be-
havior of the bond correlations is dominated by the strong
single-spin AF fluctuations, as our analysis of both fourth-
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order spin cumulant and bond correlation shows. Here ��

increases with decreasing T but it is slower than �	. At larger
doping, n=0.80, presumably close to the QCP where the AF
correlations are weak, �� decreases with decreasing T and
eventually becomes negative, similar to Nc=4 cluster behav-
ior.

IV. DISCUSSION

Without dismissing other possibilities, we note that a sce-
nario where the system forms adjacent parallel bond singlets
fits very well with our results. For instance the divergence of
local bond susceptibility �0 requires two degenerate states
with different Bnn. Suppose we measure �0 on a bond along
x direction. A configuration with adjacent parallel bond sin-
glets along x, such as the one in Fig. 4�a�, has a Bnn=−1,
while a configuration with adjacent parallel bond singlets
along y, such as one in Fig. 4�b�, has a Bnn=0. If these two
configurations are degenerate they will yield both a divergent
�0 and a divergent F0. Moreover the correlation between
parallel bond excitations will also be divergent and positive,

while the correlation between nearest-neighbor perpendicular
bonds will be negative, resembling our findings for both Nc
=4 and 16 clusters.

It would be interesting to investigate the dependence of
the QCP as a function of the cluster size. However, the tem-
perature range restriction for the Nc=16 calculations makes
this unfeasible. A definite answer to whether there is a causal
relation between the PG and the bond fluctuations or whether
they just happen to coexist is also difficult to be given at this
time.

V. CONCLUSIONS

The behavior of bond susceptibility in the PG region of
the 2D Hubbard model calculated with DCA shows evidence
of quantum criticality and implies establishment of bond or-
der. Thus, in the 2
2 cluster we find divergent local bond
susceptibility at T=0, which implies ordering in the imagi-
nary time due to the existence of degenerate bond spin exci-
tations. We find a strong correlation between excitations on
parallel neighboring bonds, which suggests that the
pseudogap region is characterized by bond singlet dimeriza-
tion. We argue that the existence of unquenched local zero-
energy fluctuations for small Nc implies long-range order in
the limit Nc→� or the intervention of competing phase tran-
sition. The suppression of divergence for n� �0.78 implies
that n�0.78 is a QCP which separates the unconventional
pseudogap region characterized by dimers from a conven-
tional Fermi liquid.
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FIG. 4. �a� Configuration with bond singlets along x direction.
The marked bond is a superposition of states with AF aligned spins.
�b� Configuration with bond singlets along y direction. The marked
bond is a superposition of two states with AF aligned spins and of
two states with FM aligned spins. The bond operator, Eq. �3�, mea-
sured on the bond along x direction �marked bond� takes the value
Bnn=−1 �Bnn=0� for configuration a �b�. If �a� and �b� are degen-
erate, the local bond susceptibility and local cumulant will diverge

as
�0

2

T when T→0.
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